HIDROSTÁTICA – Parte 2

O pricípio de Pascal pode ser usado para explicar como um sistema hidráulico funciona. Um exemplo comum deste sistema é o elevador hidráulico usado para levantar um carro do solo para reparos mecânicos.

Princípio de Pascal: A pressão aplicada a um fluido dentro de um recepiente fechado é transmitida, sem variação, a todas as partes do fluido, bem como às paredes do recepiente.

A explicação para o princípio de Pascal é simples. Caso houvesse uma diferença de pressão, haveriam forças resultantes no fluido, e como já discutimos acima, o fluido não estaria em repouso.

Em um elevador hidráulico uma pequena força aplicada a uma pequena área de um pistão é transformada em uma grande força aplicada em uma grande área de outro pistão (veja figura abaixo). Se um carro está sobre um grande pistão, ele pode ser levantado aplicando-se uma força F1 relativamente pequena, de modo que a razão entre a força peso do carro (F2) e a força aplicada (F1) seja igual à razão entre as áreas dos pistões.

P1 = P2 ,          logo F1/A1 = F2/A2 ,         e   F1/F2 = A1/A2           [1.5]

 

Embora a força aplicada  (F1) seja bem menor que a força peso  (F2), o trabalho realizado é o mesmo. Trabalho é força vezes distância. Logo, se a força no pistão maior (peso) for 10 vezes maior do que a força no pistão menor (aplicada), a distância que ela percorre será 10 vezes menor. Isto se deve à conservação de volume:

V1 = V2,      logo x1 . A1 = x2 . A2,        ou seja     x1/x2 = A2/A1 = F2/F1 .               [1.6]

 

Medidores de pressão

A relação entre pressão e profundidade é muito utilizada em instrumentos que medem pressão. Exemplos são  o manômetro com tubo fechado e o de tubo aberto. A medida é feita comparando-se a pressão em um lado do tubo com uma pressão conhecida (calibrada) no outro lado (veja figura abaixo).

Um barômetro típico de mercúrio é um manômetro de tubo fechado. A parte fechada é próxima a pressão zero, enquanto que o outro extremo é aberto à atmosfera, ou é conectada aonde se quer medir uma pressão. Como existe uma diferença de pressão entre os dois extremos do tubo, uma coluna de fluido pode ser mantida no tubo. Da fórmula [1.4]  temos que a altura da coluna é proporcional à diferença de pressão. Se a pressão no extremo fechado for zero, então a altura da coluna é diretamente proportional à pressão no outro extremo.

 

 

Manômetro de tubo fechado:      P =  rgh           [1.7]

Em um manômetro de tubo fechado, um extremo do tubo é aberto para a atmosfera, e está portanto à pressão atmosférica. O outro extremo está sob a pressão que deve ser medida. Novamente, se existe uma diferença de pressão entre os dois extremos do tubo, se formará uma coluna dentro do tubo cuja altura  (h) é proporcional à diferença de pressão.

 

Manômetro de tubo fechado:      P = Patm + rgh           [1.8]

A pressão P é conhecida como pressão absoluta; a diferença de pressão entre a pressão absoluta P e a pressão atmosférica Patm é conhecida como pressão de calibre. Muitos medidores de pressão só informam a pressão de calibre.

Leia: O que é a pressão arterial?

Princípio de Arquimedes: Eureca!

De acordo com a lenda, isto (eureca!) foi o que Arquimedes gritou quando ele descobriu um fato importante sobre a força de empuxo. Tão importante, que o chamamos de princípio de Arquimedes (e tão importante que, diz a lenda, Arquimedes pulou da banheira e correu pelas ruas após a descoberta).

Princípio de Arquimedes : Um objeto que está parcialmente, ou completamente, submerso em um fluido, sofrerá uma força de empuxo igual ao peso do fluido que objeto desloca.

        FE = Wfluidorfluido . Vdeslocado . g           [1.9]

A força de empuxo, FE , aplicada pelo fluido sobre um objeto é dirigida para cima. A força deve-se à diferença de pressão exercida na parte de baixo e na parte de cima do objeto. Para um  objeto flutuante, a parte que fica acima da superfície está sob a pressão atmosférica, enquanto que a parte que está  abaixo da superfície está sob uma pressão maior porque ela está em contato com uma certa  profundidade do fluido, e a pressão aumenta com a profundidade. Para um objeto completamente submerso, a parte de cima do objeto não está sob a pressão atmosférica, mas a parte de baixo ainda está sob uma pressão maior porque está mais fundo no fluido. Em ambos os casos a diferença na pressão resulta em uma força resultante para cima (força de empuxo) sobre o objeto. Esta força tem que ser igual ao peso da massa de água  (rfluido . Vdeslocado) deslocada, já que se o objeto não ocupasse aquele espaço esta seria a força aplicada ao fluido dentro daquele volume (Vdeslocado) a fim de que o fluido estivesse em estado de equilíbrio.

Exemplo

Uma bola de futebol flutua em uma poça de água. A bola possui uma massa de  0,5 kg e um diâmetro de 22 cm.

(a) Qual é a força de empuxo?

(b) Qual é o volume de água deslocado pela bola?

(c) Qual é a densidade média da bola de futebol?

(a) Para encontrar a força de empuxo, desenhe um diagrama de forças simples. A bola flutua na água, logo não existe força resultante: o peso é contrabalançado pela força de empuxo. Logo,

    FE = mg =  0,5 kg x 9,8 m/s2 = 4,9 N

(b) Pelo pricípio de Arquimedes, a força de empuxo é igual ao peso do fluido deslocado, Wfluido . O peso é massa vezes g, e a massa é a densidade vezes o volume. Logo,

    FE = Wfluidorfluido  . Vdeslocado  . g

e o volume descolado é simplesmente

    Vdeslocado = FE / (rfluido . g) = 4,9 / (1000 x 9,8) = 5,58 x 10-3 m3

(c) Para encontrar a densidade da bola precisamos determinar o seu volume. Este é dado por

    Vbola = 4p r3/3= 5,58 x 10-3 m3

A densidade é portanto a massa dividida pelo volume:

    rbola = 0,5/(5,58 x 10-3) =89,6 kg/m3

Uma outra maneira de se encontrar a densidade da bola é usar o volume do fluido deslocado. Para um objeto flutuante, o peso do objeto é igual à força de empuxo, que é por sua vez igual ao peso do fluido deslocado. Cancelando os fatores de g, obtemos:

    para um objeto flutuante: r . V = rfluido . Vdeslocado

Logo, a densidade é:

        = rfluido . Vdeslocado / V = 1000 x 5,0 x 10-4 /(5,58 x 10-3) = 89,6 kg/m3

A bola de futebol é muito menos densa do que a água porque ela é cheia de ar. Um objeto (ou um outro fluido) irá flutuar se sua densidade for menor do que a do fluido; se sua densidade for maior do que a do fluido, ela afundará.

Por: Carlos Bertulani


Posted

in

by

Tags:

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *