O pricípio de Pascal pode ser usado para explicar como um sistema hidráulico funciona. Um exemplo comum deste sistema é o elevador hidráulico usado para levantar um carro do solo para reparos mecânicos.
Princípio de Pascal: A pressão aplicada a um fluido dentro de um recepiente fechado é transmitida, sem variação, a todas as partes do fluido, bem como às paredes do recepiente.
A explicação para o princípio de Pascal é simples. Caso houvesse uma diferença de pressão, haveriam forças resultantes no fluido, e como já discutimos acima, o fluido não estaria em repouso.
Em um elevador hidráulico uma pequena força aplicada a uma pequena área de um pistão é transformada em uma grande força aplicada em uma grande área de outro pistão (veja figura abaixo). Se um carro está sobre um grande pistão, ele pode ser levantado aplicando-se uma força F1 relativamente pequena, de modo que a razão entre a força peso do carro (F2) e a força aplicada (F1) seja igual à razão entre as áreas dos pistões.
P1 = P2 , logo F1/A1 = F2/A2 , e F1/F2 = A1/A2 [1.5]
Embora a força aplicada (F1) seja bem menor que a força peso (F2), o trabalho realizado é o mesmo. Trabalho é força vezes distância. Logo, se a força no pistão maior (peso) for 10 vezes maior do que a força no pistão menor (aplicada), a distância que ela percorre será 10 vezes menor. Isto se deve à conservação de volume:
V1 = V2, logo x1 . A1 = x2 . A2, ou seja x1/x2 = A2/A1 = F2/F1 . [1.6]
Medidores de pressão
A relação entre pressão e profundidade é muito utilizada em instrumentos que medem pressão. Exemplos são o manômetro com tubo fechado e o de tubo aberto. A medida é feita comparando-se a pressão em um lado do tubo com uma pressão conhecida (calibrada) no outro lado (veja figura abaixo).
Um barômetro típico de mercúrio é um manômetro de tubo fechado. A parte fechada é próxima a pressão zero, enquanto que o outro extremo é aberto à atmosfera, ou é conectada aonde se quer medir uma pressão. Como existe uma diferença de pressão entre os dois extremos do tubo, uma coluna de fluido pode ser mantida no tubo. Da fórmula [1.4] temos que a altura da coluna é proporcional à diferença de pressão. Se a pressão no extremo fechado for zero, então a altura da coluna é diretamente proportional à pressão no outro extremo.
- Manômetro de tubo fechado: P = rgh [1.7]
Em um manômetro de tubo fechado, um extremo do tubo é aberto para a atmosfera, e está portanto à pressão atmosférica. O outro extremo está sob a pressão que deve ser medida. Novamente, se existe uma diferença de pressão entre os dois extremos do tubo, se formará uma coluna dentro do tubo cuja altura (h) é proporcional à diferença de pressão.
- Manômetro de tubo fechado: P = Patm + rgh [1.8]
A pressão P é conhecida como pressão absoluta; a diferença de pressão entre a pressão absoluta P e a pressão atmosférica Patm é conhecida como pressão de calibre. Muitos medidores de pressão só informam a pressão de calibre.
Leia: O que é a pressão arterial?
Princípio de Arquimedes: Eureca!
De acordo com a lenda, isto (eureca!) foi o que Arquimedes gritou quando ele descobriu um fato importante sobre a força de empuxo. Tão importante, que o chamamos de princípio de Arquimedes (e tão importante que, diz a lenda, Arquimedes pulou da banheira e correu pelas ruas após a descoberta).
Princípio de Arquimedes : Um objeto que está parcialmente, ou completamente, submerso em um fluido, sofrerá uma força de empuxo igual ao peso do fluido que objeto desloca.
FE = Wfluido = rfluido . Vdeslocado . g [1.9]
A força de empuxo, FE , aplicada pelo fluido sobre um objeto é dirigida para cima. A força deve-se à diferença de pressão exercida na parte de baixo e na parte de cima do objeto. Para um objeto flutuante, a parte que fica acima da superfície está sob a pressão atmosférica, enquanto que a parte que está abaixo da superfície está sob uma pressão maior porque ela está em contato com uma certa profundidade do fluido, e a pressão aumenta com a profundidade. Para um objeto completamente submerso, a parte de cima do objeto não está sob a pressão atmosférica, mas a parte de baixo ainda está sob uma pressão maior porque está mais fundo no fluido. Em ambos os casos a diferença na pressão resulta em uma força resultante para cima (força de empuxo) sobre o objeto. Esta força tem que ser igual ao peso da massa de água (rfluido . Vdeslocado) deslocada, já que se o objeto não ocupasse aquele espaço esta seria a força aplicada ao fluido dentro daquele volume (Vdeslocado) a fim de que o fluido estivesse em estado de equilíbrio.
Exemplo
Uma bola de futebol flutua em uma poça de água. A bola possui uma massa de 0,5 kg e um diâmetro de 22 cm.
(a) Qual é a força de empuxo?
(b) Qual é o volume de água deslocado pela bola?
(c) Qual é a densidade média da bola de futebol?
(a) Para encontrar a força de empuxo, desenhe um diagrama de forças simples. A bola flutua na água, logo não existe força resultante: o peso é contrabalançado pela força de empuxo. Logo,
FE = mg = 0,5 kg x 9,8 m/s2 = 4,9 N
(b) Pelo pricípio de Arquimedes, a força de empuxo é igual ao peso do fluido deslocado, Wfluido . O peso é massa vezes g, e a massa é a densidade vezes o volume. Logo,
FE = Wfluido = rfluido . Vdeslocado . g
e o volume descolado é simplesmente
Vdeslocado = FE / (rfluido . g) = 4,9 / (1000 x 9,8) = 5,58 x 10-3 m3
(c) Para encontrar a densidade da bola precisamos determinar o seu volume. Este é dado por
Vbola = 4p r3/3= 5,58 x 10-3 m3
A densidade é portanto a massa dividida pelo volume:
rbola = 0,5/(5,58 x 10-3) =89,6 kg/m3
Uma outra maneira de se encontrar a densidade da bola é usar o volume do fluido deslocado. Para um objeto flutuante, o peso do objeto é igual à força de empuxo, que é por sua vez igual ao peso do fluido deslocado. Cancelando os fatores de g, obtemos:
para um objeto flutuante: r . V = rfluido . Vdeslocado
Logo, a densidade é:
r = rfluido . Vdeslocado / V = 1000 x 5,0 x 10-4 /(5,58 x 10-3) = 89,6 kg/m3
A bola de futebol é muito menos densa do que a água porque ela é cheia de ar. Um objeto (ou um outro fluido) irá flutuar se sua densidade for menor do que a do fluido; se sua densidade for maior do que a do fluido, ela afundará.
Por: Carlos Bertulani
Leave a Reply